The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples.

نویسندگان

  • Yakov Pesin
  • Howard Weiss
چکیده

We first motivate the study of multifractals. We then present a rigorous mathematical foundation for the multifractal analysis of Gibbs measures invariant under dynamical systems. Finally we effect a complete multifractal analysis for several classes of hyperbolic dynamical systems. (c) 1997 American Institute of Physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multifractal Analysis of Gibbs Measures for Conformal Expanding Maps and Markov Moran Geometric Constructions

We establish the complete multifractal formalism for Gibbs measures for confor-mal expanding maps and Markov Moran geometric constructions. Examples include Markov maps of an interval, hyperbolic Julia sets, and conformal toral endomorphisms. This paper describes the multifractal analysis of measures invariant under dynamical systems. The concept of a multifractal analysis was suggested by seve...

متن کامل

Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum

We consider a class of Gibbs measures on self-affine Sierpinski carpets and perform the multifractal analysis of its elements. These deterministic measures are Gibbs measures associated with bundle random dynamical systems defined on probability spaces whose geometrical structure plays a central rôle. A special subclass of these measures is the class of multinomial measures on Sierpinski carpet...

متن کامل

On the Gibbs properties of Bernoulli convolutions

We consider infinitely convolved Bernoulli measures (or simply Bernoulli convolutions) related to the β-numeration. A matrix decomposition of these measures is obtained in the case when β is a PV number. We also determine their Gibbs properties for β being a multinacci number, which makes the multifractal analysis of the corresponding Bernoulli convolution possible.

متن کامل

2 N ov 2 00 4 On the Gibbs properties of Bernoulli convolutions related to β - numeration in multinacci bases

We consider infinitely convolved Bernoulli measures (or simply Bernoulli convolutions) related to the β-numeration. A matrix decomposition of these measures is obtained in the case when β is a PV number. We also determine their Gibbs properties for β being a multi-nacci number, which makes the multifractal analysis of the corresponding Bernoulli convolution possible.

متن کامل

Multifractal Analysis for Lyapunov Exponents on Nonconformal Repellers

For nonconformal repellers satisfying a certain cone condition, we establish a version of multifractal analysis for the topological entropy of the level sets of the Lyapunov exponents. Due to the nonconformality, the Lyapunov exponents are averages of nonadditive sequences of potentials, and thus one cannot use Birkhoff’s ergodic theorem neither the classical thermodynamic formalism. We use ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 1997